Pareto-Rational Verification

Clément Tamines (Université de Mons)

Joint work with Véronique Bruyère (Université de Mons) Jean-François Raskin (Université libre de Bruxelles)

> June 29, 2022 Highlights '22

Motivation: ensure the correctness of systems responsible for critical tasks

Motivation: ensure the correctness of systems responsible for critical tasks

Classical approach to Formal Verification (FV)

Motivation: ensure the correctness of systems responsible for critical tasks

Classical approach to Formal Verification (FV)

• model of the system to verify

Motivation: ensure the correctness of systems responsible for critical tasks

Classical approach to Formal Verification (FV)

- model of the system to verify
- model of the environment in which it is executed

Motivation: ensure the correctness of systems responsible for critical tasks

Classical approach to Formal Verification (FV)

- model of the system to verify
- model of the environment in which it is executed
- **specification** φ to be enforced by the system

Motivation: ensure the correctness of systems responsible for critical tasks

Classical approach to Formal Verification (FV)

- model of the system to verify
- model of the environment in which it is executed
- **specification** φ to be enforced by the system

Goal: check if φ satisfied in all executions of the system in the environment

Motivation: ensure the correctness of systems responsible for critical tasks

Classical approach to Formal Verification (FV)

- model of the system to verify
- model of the environment in which it is executed
- **specification** φ to be enforced by the system

Goal: check if φ satisfied in all executions of the system in the environment

Limitations:

Motivation: ensure the correctness of systems responsible for critical tasks

Classical approach to Formal Verification (FV)

- model of the system to verify
- model of the environment in which it is executed
- **specification** φ to be enforced by the system

Goal: check if φ satisfied in all executions of the system in the environment

Limitations:

• check single behavior of the system

Motivation: ensure the correctness of systems responsible for critical tasks

Classical approach to Formal Verification (FV)

- model of the system to verify
- model of the environment in which it is executed
- **specification** φ to be enforced by the system

Goal: check if φ satisfied in all executions of the system in the environment

Limitations:

- check single behavior of the system
- against potentially irrational behaviors of environment

Stackelberg-Pareto game (SP game) [BRT21]: $\mathcal{G} = (G, \Omega_0, \Omega_1, \dots, \Omega_t)$

Stackelberg-Pareto game (SP game) [BRT21]: $\mathcal{G} = (G, \Omega_0, \Omega_1, \dots, \Omega_t)$

Player 0 (system): objective Ω₀

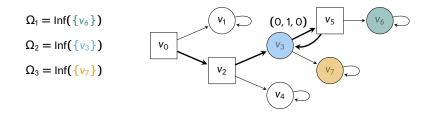
Stackelberg-Pareto game (SP game) [BRT21]: $\mathcal{G} = (G, \Omega_0, \Omega_1, \dots, \Omega_t)$

- Player 0 (system): objective Ω₀
- Player 1 (environment): several objectives Ω₁, . . . , Ω_t (components)

Stackelberg-Pareto game (SP game) [BRT21]: $\mathcal{G} = (G, \Omega_0, \Omega_1, \dots, \Omega_t)$

- Player 0 (system): objective Ω₀
- Player 1 (environment): several objectives $\Omega_1, \ldots, \Omega_t$ (components)

Payoff of ρ for Player 1 is the vector of Booleans pay(ρ) $\in \{0, 1\}^t$

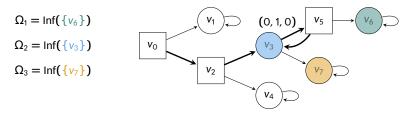


Stackelberg-Pareto game (SP game) [BRT21]: $\mathcal{G} = (G, \Omega_0, \Omega_1, \dots, \Omega_t)$

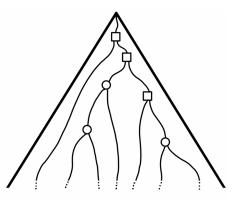
- Player 0 (system): objective Ω₀
- Player 1 (environment): several objectives $\Omega_1, \ldots, \Omega_t$ (components)

Payoff of ρ for Player 1 is the vector of Booleans pay(ρ) $\in \{0, 1\}^t$

order ≤ on payoffs, e.g., (0, 1, 0) < (0, 1, 1)

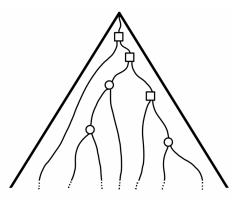


Behavior of the system: finite-memory strategy for Player 0



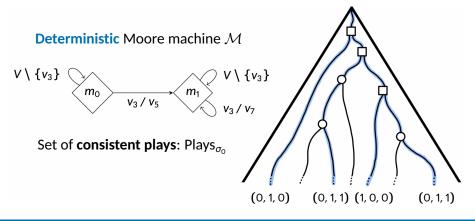
Behavior of the system: finite-memory strategy for Player 0

 \rightarrow verify the **correctness** of this strategy



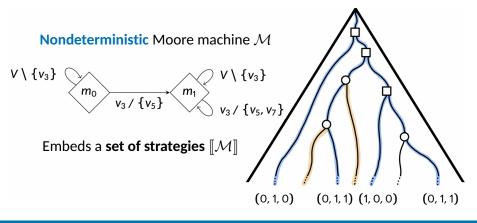
Behavior of the system: finite-memory strategy for Player 0

 \rightarrow verify the **correctness** of this strategy



Behavior of the system: finite-memory strategy for Player 0

 \rightarrow verify the **correctness** of this strategy



Decide whether for all strategies $\sigma_0 \in [\mathcal{M}]$ of Player 0, every play $\rho \in \text{Plays}_{\sigma_0}$ with $\text{pay}(\rho) \in P_{\sigma_0}$ are such that $\rho \in \Omega_0$

Decide whether for all strategies $\sigma_0 \in [\mathcal{M}]$ of Player 0, every play $\rho \in \text{Plays}_{\sigma_0}$ with $\text{pay}(\rho) \in P_{\sigma_0}$ are such that $\rho \in \Omega_0$

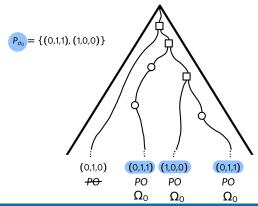
Environment is rational and responds to σ_0 to get a Pareto-optimal payoff

Decide whether for all strategies $\sigma_0 \in [\mathcal{M}]$ of Player 0, every play $\rho \in \text{Plays}_{\sigma_0}$ with $\text{pay}(\rho) \in P_{\sigma_0}$ are such that $\rho \in \Omega_0$

Environment is **rational** and responds to σ_0 to get a Pareto-optimal payoff \rightarrow Player 0 must satisfy Ω_0 in every such rational response

Decide whether for all strategies $\sigma_0 \in [\mathcal{M}]$ of Player 0, every play $\rho \in \text{Plays}_{\sigma_0}$ with $\text{pay}(\rho) \in P_{\sigma_0}$ are such that $\rho \in \Omega_0$

Environment is **rational** and responds to σ_0 to get a Pareto-optimal payoff \rightarrow Player 0 must satisfy Ω_0 in every such rational response



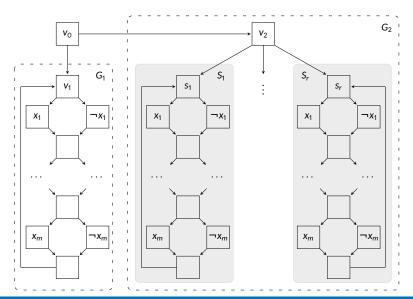
Complexity Results

Study both problems for parity, Boolean Büchi, and LTL objectives

PRV Problem	
Objective	Complexity class
Parity	co-NP-complete
Boolean Büchi	Π_2 P-complete
LTL	PSPACE-complete

UPRV Problem	
Objective	Complexity class
Parity	PSPACE, NP-hard, co-NP-hard
Boolean Büchi	PSPACE-complete
LTL	2EXPTIME-complete

Cool Reductions: co3SAT, Σ_2 QBF, solving games, ...



Clément Tamines (Université de Mons)

PRV and UPRV problem

Both problems are fixed-parameter tractable (FPT) for parity and Boolean Büchi with various parameters

PRV and UPRV problem

Both problems are fixed-parameter tractable (FPT) for parity and Boolean Büchi with various parameters

Sound: in practice, we can assume those parameters to have small values

PRV and UPRV problem

Both problems are fixed-parameter tractable (FPT) for parity and Boolean Büchi with various parameters

Sound: in practice, we can assume those parameters to have small values

Additional Algorithm: based on counterexamples

PRV and UPRV problem

Both problems are fixed-parameter tractable (FPT) for parity and Boolean Büchi with various parameters

Sound: in practice, we can assume those parameters to have small values

Additional Algorithm: based on counterexamples

→ implemented and compared using toy example and random instances

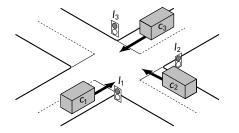
PRV and UPRV problem

Both problems are fixed-parameter tractable (FPT) for parity and Boolean Büchi with various parameters

Sound: in practice, we can assume those parameters to have small values

Additional Algorithm: based on counterexamples

→ implemented and compared using toy example and random instances



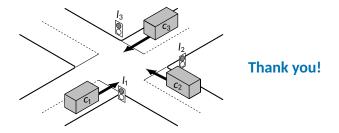
PRV and UPRV problem

Both problems are fixed-parameter tractable (FPT) for parity and Boolean Büchi with various parameters

Sound: in practice, we can assume those parameters to have small values

Additional Algorithm: based on counterexamples

→ implemented and compared using toy example and random instances



Bibliography

[BRT21] Véronique Bruyère, Jean-François Raskin, and Clément Tamines. Stackelberg-pareto synthesis.

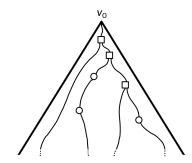
> In Serge Haddad and Daniele Varacca, editors, *32nd International Conference on Concurrency Theory, CONCUR 2021, August 24-27, 2021, Virtual Conference,* volume 203 of *LIPIcs,* pages 27:1–27:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

[GTW02] Erich Gr\u00e4del, Wolfgang Thomas, and Thomas Wilke, editors. Automata, Logics, and Infinite Games: A Guide to Current Research [outcome of a Dagstuhl seminar, February 2001], volume 2500 of Lecture Notes in Computer Science. Springer, 2002.

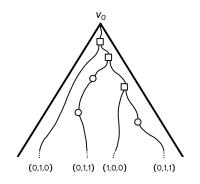
[vS37] Heinrich Freiherr von Stackelberg. Marktform und Gleichgewicht. Wien und Berlin, J. Springer, 1937.

1. Player O announces his strategy σ_0

- 1. Player O announces his strategy σ_0
- 2. Player 1 considers $Plays_{\sigma_0}$



- 1. Player O announces his strategy σ_0
- 2. Player 1 considers $Plays_{\sigma_0}$
 - corresponding set of payoffs { $pay(\rho) | \rho \in Plays_{\sigma_0}$ }



- 1. Player O announces his strategy σ_0
- 2. Player 1 considers Plays_{σ_0}
 - corresponding set of payoffs { $pay(\rho) | \rho \in Plays_{\sigma_0}$ }
 - identify Pareto-optimal (PO) payoffs (maximal w.r.t. \leq) : set P_{σ_0}

