Stackelberg-Pareto Synthesis

Clément Tamines (University of Mons)

Joint work with Véronique Bruyère (University of Mons) Jean-François Raskin (Université Libre de Bruxelles)

> March 24, 2021 MFV Seminar

Conclusion

Outline of the Talk

Recall Reactive Synthesis

- reminder on games
- classical and alternative approaches

Introduce Stackelberg-Pareto Synthesis

- our new model
- reactive synthesis in this context

Present our results

- fixed-parameter complexity
- NEXPTIME-completeness

Reactive system: system which constantly interacts with its environment

Reactive system: system which constantly interacts with its environment

Problem of Reactive Synthesis (RS)

Reactive system: system which constantly interacts with its environment

Problem of Reactive Synthesis (RS)

• given a **specification** for the system

Reactive system: system which constantly interacts with its environment

Problem of Reactive Synthesis (RS)

- given a specification for the system
- synthesize an adequate controller for the system

Reactive system: system which constantly interacts with its environment

Problem of Reactive Synthesis (RS)

- given a **specification** for the system
- synthesize an adequate controller for the system
- enforce the specification whatever the behavior of the environment

Reactive system: system which constantly interacts with its environment

Problem of Reactive Synthesis (RS)

- given a **specification** for the system
- synthesize an adequate controller for the system
- enforce the specification whatever the behavior of the environment

Classical approach for RS [GTW02]

Reactive system: system which constantly interacts with its environment

Problem of Reactive Synthesis (RS)

- given a **specification** for the system
- synthesize an adequate controller for the system
- enforce the specification whatever the behavior of the environment

Classical approach for RS [GTW02]

• interaction is modeled using a two-player game

Reactive system: system which constantly interacts with its environment

Problem of Reactive Synthesis (RS)

- given a **specification** for the system
- synthesize an adequate controller for the system
- enforce the specification whatever the behavior of the environment

Classical approach for RS [GTW02]

- interaction is modeled using a two-player game
- Player 0 = system, Player 1 = the environment

Reactive system: system which constantly interacts with its environment

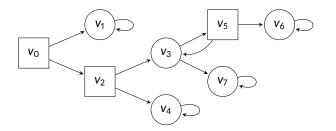
Problem of Reactive Synthesis (RS)

- given a specification for the system
- synthesize an adequate controller for the system
- enforce the specification whatever the behavior of the environment

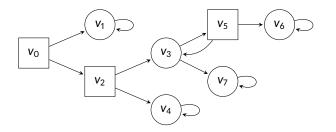
Classical approach for RS [GTW02]

- interaction is modeled using a two-player game
- Player 0 = system, Player 1 = the environment
- specification = objective

Game Arena: tuple $G = (V, V_0, V_1, E, v_0)$ with (V, E) a directed graph

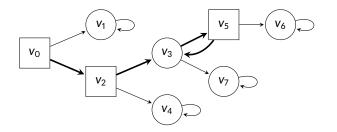


Game Arena: tuple $G = (V, V_0, V_1, E, v_0)$ with (V, E) a directed graph



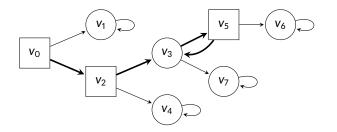
Play: infinite path starting with the **initial vertex** v_0

Game Arena: tuple $G = (V, V_0, V_1, E, v_0)$ with (V, E) a directed graph



Play: infinite path starting with the initial vertex v_0 $\rightarrow \rho = v_0 v_2 (v_3 v_5)^{\omega}$

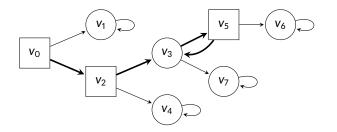
Game Arena: tuple $G = (V, V_0, V_1, E, v_0)$ with (V, E) a directed graph



Play: infinite path starting with the **initial vertex** $v_0 \rightarrow \rho = v_0 v_2 (v_3 v_5)^{\omega}$

History: finite path defined similarly

Game Arena: tuple $G = (V, V_0, V_1, E, v_0)$ with (V, E) a directed graph



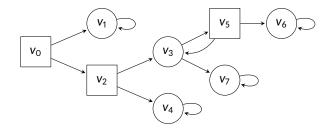
Play: infinite path starting with the initial vertex v_0 $\rightarrow \rho = v_0 v_2 (v_3 v_5)^{\omega}$

History: finite path defined similarly

 $\rightarrow h = v_0 v_2 v_3 v_5 v_3$

Games: Objectives

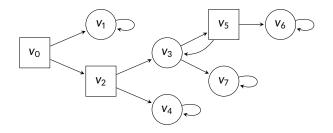
Objective Ω_i for Player $i \in \{0, 1\}$: subset of plays



Games: Objectives

Objective Ω_i for Player $i \in \{0, 1\}$: subset of plays

Play ρ satisfies objective Ω_i if $\rho \in \Omega_i$

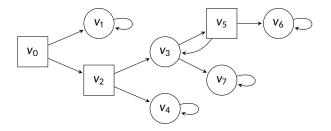


Conclusion

Games: Objectives

Objective Ω_i for Player $i \in \{0, 1\}$: subset of plays

Play ρ satisfies objective Ω_i if $\rho \in \Omega_i$



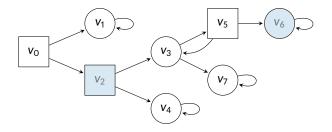
Reachability: plays which visit $T \subseteq V$

Conclusion

Games: Objectives

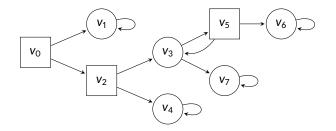
Objective Ω_i for Player $i \in \{0, 1\}$: subset of plays

Play ρ satisfies objective Ω_i if $\rho \in \Omega_i$



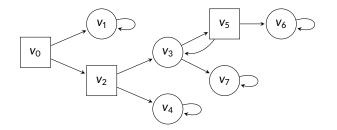
Reachability: plays which visit $T \subseteq V$ $\rightarrow T = \{v_2, v_6\}, \rho = v_0v_2(v_3v_5)^{\omega}$ satisfies Reach(T)

Strategy: $\sigma_i: V^* \times V_i \rightarrow V$ which dictates the choices of Player *i*



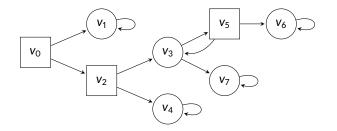
Strategy: $\sigma_i: V^* \times V_i \rightarrow V$ which dictates the choices of Player *i*

Given $\rho = v_0 v_1 \dots v_k$ yields v_{k+1} €Vi h



Strategy: $\sigma_i: V^* \times V_i \rightarrow V$ which dictates the choices of Player *i*

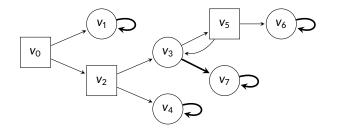
Given $\rho = v_0 v_1 \dots v_k$ yields v_{k+1} €Vi



A strategy may use hv_k (uses memory) or just v_k (memoryless) to yield v_{k+1}

Strategy: $\sigma_i: V^* \times V_i \rightarrow V$ which dictates the choices of Player *i*

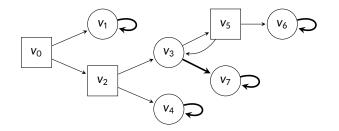
Given $\rho = \underbrace{v_0 v_1 \dots v_k}_{k \to 1}$ yields v_{k+1} €Vi



A strategy may use hv_k (uses memory) or just v_k (memoryless) to yield v_{k+1}

Games: Consistency

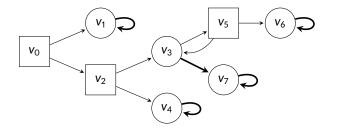
A play is **consistent** with σ_i if $v_{k+1} = \sigma_i(v_0 \dots v_k) \forall k \in \mathbb{N}, \forall v_k \in V_i$



Games: Consistency

A play is **consistent** with σ_i if $v_{k+1} = \sigma_i(v_0 \dots v_k) \forall k \in \mathbb{N}, \forall v_k \in V_i$

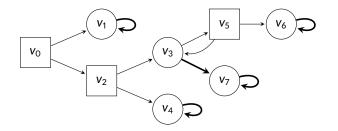
Consider the set of plays consistent with a strategy σ_0



Games: Consistency

A play is **consistent** with σ_i if $v_{k+1} = \sigma_i(v_0 \dots v_k) \forall k \in \mathbb{N}, \forall v_k \in V_i$

Consider the **set of plays consistent** with a strategy σ_0 \rightarrow Plays_{σ_0} = { $v_0v_1^{\omega}, v_0v_2v_4^{\omega}, v_0v_2v_3v_7^{\omega}$ }

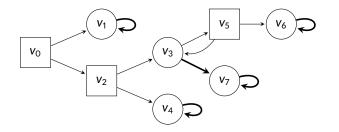


Conclusion

Games: Consistency

A play is **consistent** with σ_i if $v_{k+1} = \sigma_i(v_0 \dots v_k) \forall k \in \mathbb{N}, \forall v_k \in V_i$

Consider the **set of plays consistent** with a strategy σ_0 \rightarrow Plays_{σ_0} = { $v_0v_1^{\omega}, v_0v_2v_4^{\omega}, v_0v_2v_3v_7^{\omega}$ }



A strategy σ_i is winning for Player *i* if every play in Plays_{σ_i} satisfies Ω_i

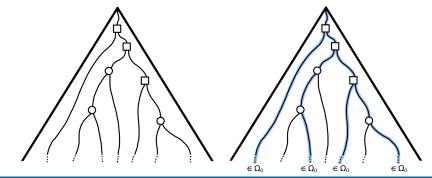
Classical approach for RS: zero-sum games [GTW02]

• objective of environment is **opposite** objective of system: $\Omega_1 = \neg \Omega_0$

- objective of environment is **opposite** objective of system: $\Omega_1 = \neg \Omega_0$
- if $\Omega_0 = \text{Reach}(\{v_2, v_6\})$, then $\Omega_1 = \text{Avoid}(\{v_2, v_6\})$

- objective of environment is **opposite** objective of system: $\Omega_1 = \neg \Omega_0$
- if $\Omega_0 = \text{Reach}(\{v_2, v_6\})$, then $\Omega_1 = \text{Avoid}(\{v_2, v_6\})$
- adversarial environment: we want a winning strategy for the system

- objective of environment is **opposite** objective of system: $\Omega_1 = \neg \Omega_0$
- if $\Omega_0 = \text{Reach}(\{v_2, v_6\})$, then $\Omega_1 = \text{Avoid}(\{v_2, v_6\})$
- adversarial environment: we want a winning strategy for the system



Setbacks and Alternative

Fully adversarial environment: bold abstraction of reality

Setbacks and Alternative

Fully adversarial environment: bold abstraction of reality

assumes the only goal of the environment is to make the system fail

Setbacks and Alternative

Fully adversarial environment: **bold abstraction of reality**

- assumes the only goal of the environment is to make the system fail
- environment can be composed of one or several components

Fully adversarial environment: **bold abstraction of reality**

- assumes the only goal of the environment is to make the system fail
- environment can be composed of one or several components
- each with own objective

Fully adversarial environment: **bold abstraction of reality**

- assumes the only goal of the environment is to make the system fail
- environment can be composed of one or several components
- each with **own objective**

Fully adversarial environment: **bold abstraction of reality**

- assumes the only goal of the environment is to make the system fail
- environment can be composed of one or several components
- each with **own objective**

Alternative: framework of **Stackelberg games** [vS37] (non-zero-sum)

• Player 0 **announces** his strategy σ_0

Fully adversarial environment: **bold abstraction of reality**

- assumes the only goal of the environment is to make the system fail
- environment can be composed of one or several components
- each with **own objective**

- Player 0 **announces** his strategy σ_0
- Player 1 rationally answers with optimal response w.r.t. his objective

Fully adversarial environment: **bold abstraction of reality**

- assumes the only goal of the environment is to make the system fail
- environment can be composed of one or several components
- each with **own objective**

- Player 0 **announces** his strategy σ_0
- Player 1 rationally answers with optimal response w.r.t. his objective
- goal of Player 0:

Fully adversarial environment: **bold abstraction of reality**

- assumes the only goal of the environment is to make the system fail
- environment can be composed of one or several components
- each with **own objective**

- Player 0 **announces** his strategy σ_0
- Player 1 rationally answers with optimal response w.r.t. his objective
- goal of Player 0:
 - announce a strategy that satisfies his objective

Fully adversarial environment: **bold abstraction of reality**

- assumes the only goal of the environment is to make the system fail
- environment can be composed of one or several components
- each with **own objective**

- Player 0 **announces** his strategy σ_0
- Player 1 rationally answers with optimal response w.r.t. his objective
- goal of Player 0:
 - announce a strategy that satisfies his objective
 - whatever the rational response of Player 1

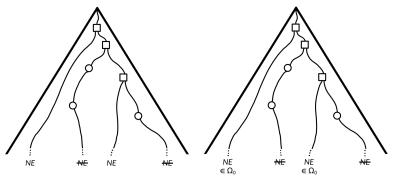
multiplayer game

- multiplayer game
- Player 0 = system, Players 1 to n = components of environment

- multiplayer game
- Player 0 = system, Players 1 to n = components of environment
- rationality: Players 1 to *n* settle to a Nash Equilibrium (NE), given σ_0

- multiplayer game
- Player 0 = system, Players 1 to *n* = components of environment
- rationality: Players 1 to *n* settle to a Nash Equilibrium (NE), given σ_0
- → Player 0 must satisfy his objective when the environment plays any NE

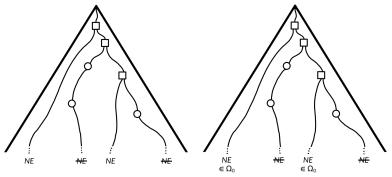
- multiplayer game
- Player 0 = system, Players 1 to n = components of environment
- rationality: Players 1 to *n* settle to a Nash Equilibrium (NE), given σ_0
- \rightarrow Player 0 must satisfy his objective when the environment plays any NE



Conclusion

Adversarial Rational Synthesis [FKL10, KPV16]

- multiplayer game
- Player 0 = system, Players 1 to *n* = components of environment
- rationality: Players 1 to *n* settle to a Nash Equilibrium (NE), given σ_0
- \rightarrow Player 0 must satisfy his objective when the environment plays any NE



Setbacks: components are independent selfish individuals, no cooperation

Stackelberg-Pareto game (SP game): $\mathcal{G} = (G, \Omega_0, \Omega_1, \dots, \Omega_t)$

Stackelberg-Pareto game (SP game): $\mathcal{G} = (G, \Omega_0, \Omega_1, \dots, \Omega_t)$

• Player 0 (system): objective Ω_0 , announces strategy σ_0

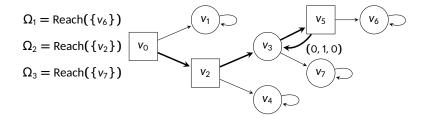
Stackelberg-Pareto game (SP game): $\mathcal{G} = (G, \Omega_0, \Omega_1, \dots, \Omega_t)$

- Player 0 (system): objective Ω_0 , announces strategy σ_0
- Player 1 (environment): several objectives $\Omega_1, \ldots, \Omega_t$ (components)

Stackelberg-Pareto game (SP game): $\mathcal{G} = (G, \Omega_0, \Omega_1, \dots, \Omega_t)$

- Player 0 (system): objective Ω₀, announces strategy σ₀
- Player 1 (environment): several objectives $\Omega_1, \ldots, \Omega_t$ (components)

Payoff of ρ for Player 1 is the vector of Booleans pay(ρ) $\in \{0, 1\}^t$

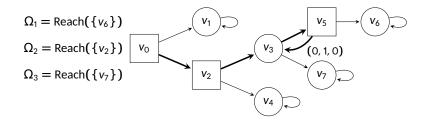


Stackelberg-Pareto game (SP game): $\mathcal{G} = (G, \Omega_0, \Omega_1, \dots, \Omega_t)$

- Player 0 (system): objective Ω₀, announces strategy σ₀
- Player 1 (environment): several objectives $\Omega_1, \ldots, \Omega_t$ (components)

Payoff of ρ for Player 1 is the vector of Booleans pay(ρ) $\in \{0, 1\}^t$

• order ≤ on payoffs, e.g., (0, 1, 0) < (0, 1, 1)



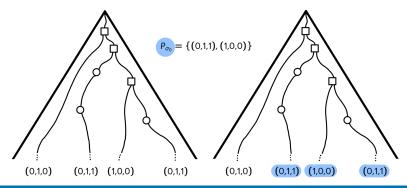
1. Player O announces his strategy σ_0

- 1. Player 0 announces his strategy σ_0
- 2. Player 1 considers Plays_{σ_0}

- 1. Player 0 announces his strategy σ_0
- 2. Player 1 considers Plays_{σ_0}
 - corresponding set of payoffs {pay(ρ) | ρ ∈ Plays_{σ0}}

- 1. Player O announces his strategy σ_0
- 2. Player 1 considers Plays_{σ_0}
 - corresponding set of payoffs $\{pay(\rho) \mid \rho \in Plays_{\sigma_0}\}$
 - identify Pareto-optimal (PO) payoffs (maximal w.r.t. ≤) : set P_{σ₀}

- 1. Player 0 announces his strategy σ_0
- 2. Player 1 considers Plays_{σ_0}
 - corresponding set of payoffs $\{pay(\rho) \mid \rho \in Plays_{\sigma_0}\}$
 - identify Pareto-optimal (PO) payoffs (maximal w.r.t. \leq) : set P_{σ_0}



Stackelberg-Pareto Synthesis Problem (SPS problem)

The SPS problem is to decide whether there exists a strategy σ_0 for Player 0 such that for every play $\rho \in \text{Plays}_{\sigma_0}$ with $\text{pay}(\rho) \in P_{\sigma_0}$, it holds that $\rho \in \Omega_0$

Stackelberg-Pareto Synthesis Problem (SPS problem)

The SPS problem is to decide whether there exists a strategy σ_0 for Player 0 such that for every play $\rho \in \text{Plays}_{\sigma_0}$ with $\text{pay}(\rho) \in P_{\sigma_0}$, it holds that $\rho \in \Omega_0$

Environment is rational and responds to σ_0 to get a Pareto-optimal payoff

Stackelberg-Pareto Synthesis Problem (SPS problem)

The SPS problem is to decide whether there exists a strategy σ_0 for Player 0 such that for every play $\rho \in \text{Plays}_{\sigma_0}$ with $\text{pay}(\rho) \in P_{\sigma_0}$, it holds that $\rho \in \Omega_0$

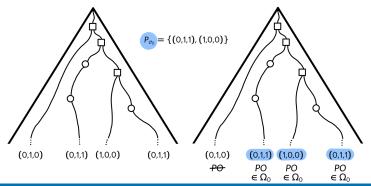
Environment is rational and responds to σ_0 to get a Pareto-optimal payoff

 \rightarrow Player 0 must satisfy Ω_0 in every such rational response

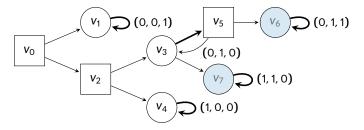
Stackelberg-Pareto Synthesis Problem (SPS problem)

The SPS problem is to decide whether there exists a strategy σ_0 for Player 0 such that for every play $\rho \in \text{Plays}_{\sigma_0}$ with $\text{pay}(\rho) \in P_{\sigma_0}$, it holds that $\rho \in \Omega_0$

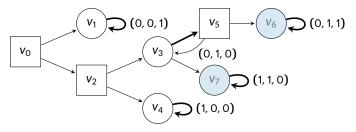
Environment is **rational** and responds to σ_0 to get a Pareto-optimal payoff \rightarrow Player 0 must satisfy Ω_0 in every such rational response



Consider σ_0 such that $\sigma_0(v_3) = v_5$

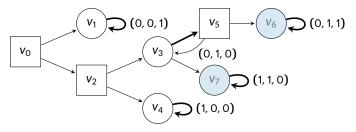


Consider σ_0 such that $\sigma_0(v_3) = v_5$



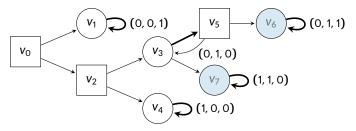
• Plays_{σ_0} = { $v_0v_1^{\omega}$, $v_0v_2v_4^{\omega}$, $v_0v_2(v_3v_5)^+v_6^{\omega}$, $v_0v_2(v_3v_5)^{\omega}$ }

Consider σ_0 such that $\sigma_0(v_3) = v_5$



- $Plays_{\sigma_0} = \{ v_0v_1^{\omega}, v_0v_2v_4^{\omega}, v_0v_2(v_3v_5)^+v_6^{\omega}, v_0v_2(v_3v_5)^{\omega} \}$
- payoffs = { (0, 0, 1), (1, 0, 0), (0, 1, 1), (0, 1, 0) }

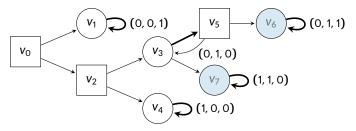
Consider σ_0 such that $\sigma_0(v_3) = v_5$



- $Plays_{\sigma_0} = \{ v_0v_1^{\omega}, v_0v_2v_4^{\omega}, v_0v_2(v_3v_5)^+v_6^{\omega}, v_0v_2(v_3v_5)^{\omega} \}$
- payoffs = { (0, 0, 1), (1, 0, 0), (0, 1, 1), (0, 1, 0) }

•
$$P_{\sigma_0} = \{ (1, 0, 0), (0, 1, 1) \}$$

Consider σ_0 such that $\sigma_0(v_3) = v_5$

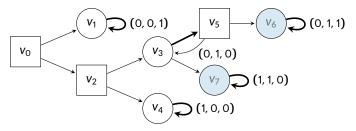


- Plays_{σ_0} = { $v_0v_1^{\omega}$, $v_0v_2v_4^{\omega}$, $v_0v_2(v_3v_5)^+v_6^{\omega}$, $v_0v_2(v_3v_5)^{\omega}$ }
- payoffs = { (0, 0, 1), (1, 0, 0), (0, 1, 1), (0, 1, 0) }

•
$$P_{\sigma_0} = \{ (1, 0, 0), (0, 1, 1) \}$$

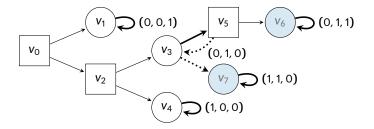
• σ_0 is not a solution to the SPS problem, e.g., $\rho = v_0 v_2 (v_4)^{\omega} \notin \Omega_0$

Consider σ_0 such that $\sigma_0(v_3) = v_5$

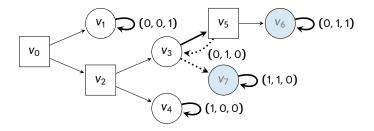


- Plays_{σ_0} = { $v_0v_1^{\omega}$, $v_0v_2v_4^{\omega}$, $v_0v_2(v_3v_5)^+v_6^{\omega}$, $v_0v_2(v_3v_5)^{\omega}$ }
- payoffs = { (0, 0, 1), (1, 0, 0), (0, 1, 1), (0, 1, 0) }
- $P_{\sigma_0} = \{ (1, 0, 0), (0, 1, 1) \}$
- σ₀ is not a solution to the SPS problem, e.g., ρ = v₀v₂(v₄)^ω ∉ Ω₀
 → the only other memoryless strategy is not a solution either

Finite-memory strategy σ'_0 s.t. $\sigma'_0(v_0v_2v_3) = v_5$ and $\sigma'_0(v_0v_2v_3v_5v_3) = v_7$



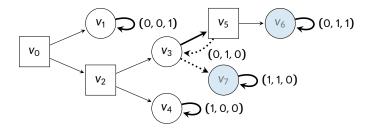
Finite-memory strategy σ'_0 s.t. $\sigma'_0(v_0v_2v_3) = v_5$ and $\sigma'_0(v_0v_2v_3v_5v_3) = v_7$



 σ'_{0} is a solution to the SPS problem: $\rho \in \Omega_{0}$ when pay(ρ) $\in P_{\sigma'_{0}}$

SPS Problem Example (2/2)

Finite-memory strategy σ'_0 s.t. $\sigma'_0(v_0v_2v_3) = v_5$ and $\sigma'_0(v_0v_2v_3v_5v_3) = v_7$



 σ'_{0} is a solution to the SPS problem: $\rho \in \Omega_{0}$ when pay(ρ) $\in P_{\sigma'_{0}}$

 \rightarrow Player 0 may need memory to have a solution to the SPS problem

Stackelberg-Pareto Synthesis (submitted to ICALP 2021) [BRT21]

• introduce the model and problem

- introduce the model and problem
- consider SP games where

- introduce the model and problem
- consider SP games where
 - every objective is parity: parity SP games

- introduce the model and problem
- consider SP games where
 - every objective is parity: parity SP games
 - \rightarrow can model general class of ω -regular objectives

- introduce the model and problem
- consider SP games where •
 - every objective is parity: parity SP games
 - \rightarrow can model general class of ω -regular objectives
 - every objective is reachability: reachability SP games

- introduce the model and problem
- consider SP games where •
 - every objective is parity: parity SP games
 - \rightarrow can model general class of ω -regular objectives
 - every objective is reachability: reachability SP games
 - \rightarrow simpler setting

- introduce the model and problem
- consider SP games where
 - every objective is parity: parity SP games
 - \rightarrow can model general class of ω -regular objectives
 - every objective is reachability: reachability SP games
 - \rightarrow simpler setting
- thorough analysis of the complexity of solving the SPS problem

A problem is **fixed-parameter tractable** (FPT) for parameter k if there exists a solution running in $f(k) \times n^{\mathcal{O}(1)}$ where f is a function of k independent of n

A problem is **fixed-parameter tractable** (FPT) for parameter k if there exists a solution running in $f(k) \times n^{\mathcal{O}(1)}$ where f is a function of k independent of n

Example: solving a problem is polynomial in input size, exponential in k

A problem is **fixed-parameter tractable** (FPT) for parameter k if there exists a solution running in $f(k) \times n^{\mathcal{O}(1)}$ where f is a function of k independent of n

Example: solving a problem is polynomial in input size, exponential in $k \rightarrow$ solving the problem is fixed-parameter tractable (easy if fix a small k)

A problem is **fixed-parameter tractable** (FPT) for parameter k if there exists a solution running in $f(k) \times n^{\mathcal{O}(1)}$ where f is a function of k independent of n

Example: solving a problem is polynomial in input size, exponential in $k \rightarrow$ solving the problem is fixed-parameter tractable (easy if fix a small k)

Fixed-Parameter Complexity of SP games

Solving the SPS problem is FPT for reachability SP games for parameter *t* (number of objectives of Player 1) and FPT for parity SP games for parameters *t* and the maximal priority according to each parity objective of Player 1

A problem is **fixed-parameter tractable** (FPT) for parameter k if there exists a solution running in $f(k) \times n^{\mathcal{O}(1)}$ where f is a function of k independent of n

Example: solving a problem is polynomial in input size, exponential in $k \rightarrow$ solving the problem is fixed-parameter tractable (easy if fix a small k)

Fixed-Parameter Complexity of SP games

Solving the SPS problem is FPT for reachability SP games for parameter *t* (number of objectives of Player 1) and FPT for parity SP games for parameters *t* and the maximal priority according to each parity objective of Player 1

Sound: in practice, we can assume those parameters to have small values

Challenger-Prover Game

To show FPT results: reduction to Challenger-Prover game (C-P game)

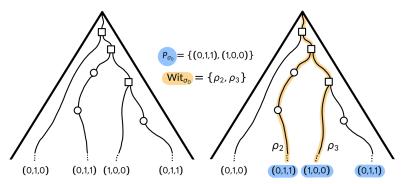
- two-player zero-sum game \mathcal{G}' , created from \mathcal{G}
- played between Challenger (C) and Prover (P)
- solution to the SPS problem in $\mathcal{G} \iff$ winning strategy for \mathcal{P} in \mathcal{G}'
- described in a generic way, later adapted to parity/reachability

Intuition: \mathcal{P} tries to show the existence of a solution, \mathcal{C} tries to disprove it

Witnesses

C-P game uses important notion of witness

- given σ_0 , we have the set P_{σ_0} of **PO payoffs**
- for each $p \in P_{\sigma_0}$, there exists ρ s.t. pay $(\rho) = p$
- select one such ρ for each $p \in P_{\sigma_0}$ (witness of p): set Wit_{σ_0}

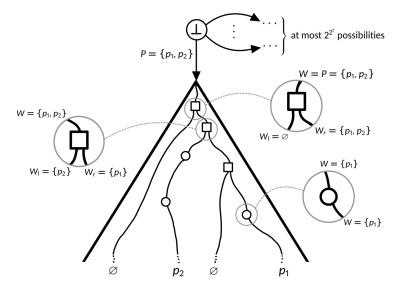


Intuition on the C-P game

w.l.o.g. we consider SP games s.t. each vertex has at most two successors

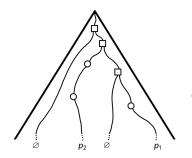
- 1. \mathcal{P} selects a set *P* of payoffs, he announces it is P_{σ_0} for σ_0 he is building
- 2. \mathcal{P} tries to show the existence of a set of witnesses for P
- 3. After selection, **one-to-one correspondence** between plays in \mathcal{G} and \mathcal{G}'
 - vertices in \mathcal{G}' are **augmented with a set** W which is a subset of P
 - initially W = P
 - after history in \mathcal{G}' , W contains p if the corresponding history in \mathcal{G} is prefix of the witness for p in the set Wit_{σ_0} that \mathcal{P} is building

Witnesses in the C-P Game



Objective in the C-P Game

Given a play ρ' in \mathcal{G}' , there is a corresponding play ρ in \mathcal{G}



If play ρ guessed to have payoff p (1)

- check that pay(ρ) = p
- check that $\rho \in \Omega_0$

Otherwise

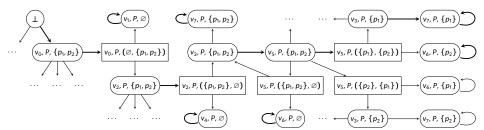
- if $pay(\rho) = p \in P$, check that $\rho \in \Omega_0$ (2)
- else check pay(ρ)

Reachability SP game: augment the arena with **set of satisfied objectives** → checking (1-3) = **Büchi objective**

Parity SP game: checking (1-3) = Boolean combination of Büchi objectives

C-P Game for our Running Example





NEXPTIME-Membership

The SPS problem is in NEXPTIME for reachability and parity SP games

NEXPTIME-Membership

The SPS problem is in NEXPTIME for reachability and parity SP games

Intuition: use important result on the strategies which are solution

NEXPTIME-Membership

The SPS problem is in NEXPTIME for reachability and parity SP games

Intuition: use important result on the strategies which are solution

• if Player 0 has a solution, he has a finite-memory one

NEXPTIME-Membership

The SPS problem is in NEXPTIME for reachability and parity SP games

Intuition: use important result on the strategies which are solution

- if Player 0 has a solution, he has a finite-memory one
- with at most an **exponential number** of memory states

NEXPTIME-Membership

The SPS problem is in NEXPTIME for reachability and parity SP games

Intuition: use important result on the strategies which are solution

- if Player 0 has a solution, he has a finite-memory one
- with at most an **exponential number** of memory states

Membership: NEXPTIME algorithm where

NEXPTIME-Membership

The SPS problem is in NEXPTIME for reachability and parity SP games

Intuition: use important result on the strategies which are solution

- if Player 0 has a solution, he has a finite-memory one
- with at most an **exponential number** of memory states

Membership: NEXPTIME algorithm where

non-deterministically guess a strategy (with exponential size)

NEXPTIME-Membership

The SPS problem is in NEXPTIME for reachability and parity SP games

Intuition: use important result on the strategies which are solution

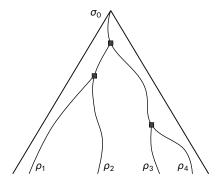
- if Player 0 has a solution, he has a finite-memory one
- with at most an **exponential number** of memory states

Membership: NEXPTIME algorithm where

- non-deterministically guess a strategy (with exponential size)
- check that it is a solution in exponential time (using automaton)

Constructing a Finite-Memory Strategy: σ_0

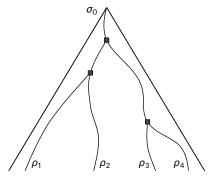
Start from a solution σ_0 to the SPS problem with Wit_{$\sigma_0} = {\rho_1, \rho_2, \rho_3, \rho_4}$ </sub>



Constructing a Finite-Memory Strategy: σ_0

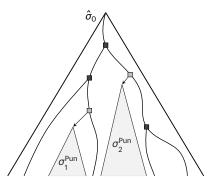
Start from a solution σ_0 to the SPS problem with Wit $_{\sigma_0} = \{\rho_1, \rho_2, \rho_3, \rho_4\}$

Intuition: build exponential-size strategy which yields $\{c\rho_1, c\rho_2, c\rho_3, c\rho_4\}$



Constructing a Finite-Memory Strategy: $\hat{\sigma}_0$

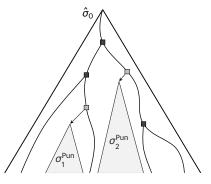
 $\hat{\sigma}_0$ follows σ_0 in prefix of witness, on deviation switch to **punishing strategy**



Constructing a Finite-Memory Strategy: $\hat{\sigma}_0$

 $\hat{\sigma}_0$ follows σ_0 in prefix of witness, on deviation switch to **punishing strategy**

 σ^{Pun} imposes Ω_0 or PO, this makes the deviation irrational for Player 1

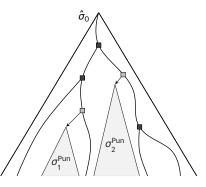


Constructing a Finite-Memory Strategy: $\hat{\sigma}_0$

 $\hat{\sigma}_0$ follows σ_0 in prefix of witness, on deviation switch to **punishing strategy**

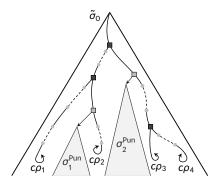
 σ^{Pun} imposes Ω_0 or PO, this makes the deviation irrational for Player 1

Exponentially many different punishing strategies, with exponential size



Constructing a Finite-Memory Strategy: $\tilde{\sigma}_0$

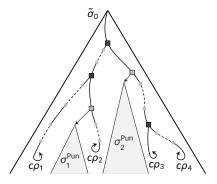
Decompose each witness in Wit_{σ_0} into at most **exponentially many** parts



Constructing a Finite-Memory Strategy: $\tilde{\sigma}_0$

Decompose each witness in Wit_{σ_0} into at most **exponentially many** parts

Compact parts into finite elementary paths or lassos of polynomial length



The SPS problem is NP-hard on Tree Arenas

Simple setting of tree arenas: trees with loops on leaves

The SPS problem is NP-hard on Tree Arenas

Simple setting of tree arenas: trees with loops on leaves

NP-hardness is shown using the Set Cover problem (NP-complete) [Kar72]

Simple setting of tree arenas: trees with loops on leaves

NP-hardness is shown using the Set Cover problem (NP-complete) [Kar72]

• $C = \{e_1, e_2, \dots, e_n\}$ of *n* elements

Simple setting of tree arenas: trees with loops on leaves

NP-hardness is shown using the Set Cover problem (NP-complete) [Kar72]

- $C = \{e_1, e_2, ..., e_n\}$ of *n* elements
- *m* subsets S_1, S_2, \ldots, S_m s.t. $S_i \subseteq C$

Simple setting of tree arenas: trees with loops on leaves

NP-hardness is shown using the Set Cover problem (NP-complete) [Kar72]

- $C = \{e_1, e_2, \dots, e_n\}$ of *n* elements
- *m* subsets S_1, S_2, \ldots, S_m s.t. $S_i \subseteq C$
- an integer $k \leq m$

Simple setting of tree arenas: trees with loops on leaves

NP-hardness is shown using the Set Cover problem (NP-complete) [Kar72]

- $C = \{e_1, e_2, ..., e_n\}$ of *n* elements
- m subsets S_1, S_2, \ldots, S_m s.t. $S_i \subseteq C$
- an integer $k \leq m$
- find k indexes i_1, i_2, \ldots, i_k s.t. $C = \bigcup_{i=1}^k S_{i_i}$.

Simple setting of tree arenas: trees with loops on leaves

NP-hardness is shown using the Set Cover problem (NP-complete) [Kar72]

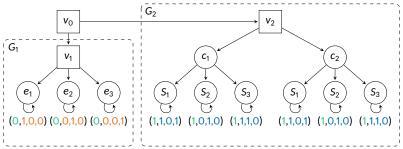
- $C = \{e_1, e_2, ..., e_n\}$ of *n* elements
- m subsets S_1, S_2, \ldots, S_m s.t. $S_i \subseteq C$
- an integer $k \leq m$
- find k indexes i_1, i_2, \ldots, i_k s.t. $C = \bigcup_{j=1}^k S_{i_j}$.

Use an SP game with polynomial number of vertices such that there is a solution to the SC problem \iff Player 0 has a solution to the SPS problem

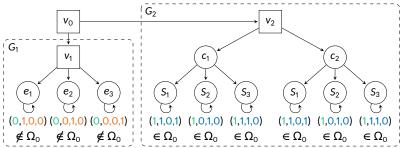
Example: $C = \{e_1, e_2, e_3\}, S_1 = \{e_1, e_3\}, S_2 = \{e_2\}, S_3 = \{e_1, e_2\}, k = 2$

Example: $C = \{e_1, e_2, e_3\}, S_1 = \{e_1, e_3\}, S_2 = \{e_2\}, S_3 = \{e_1, e_2\}, k = 2$ special objective (Ω_1) and one objective per element ($\Omega_2, \Omega_3, \Omega_4$)

Example: $C = \{e_1, e_2, e_3\}, S_1 = \{e_1, e_3\}, S_2 = \{e_2\}, S_3 = \{e_1, e_2\}, k = 2$ special objective (Ω_1) and one objective per element ($\Omega_2, \Omega_3, \Omega_4$)

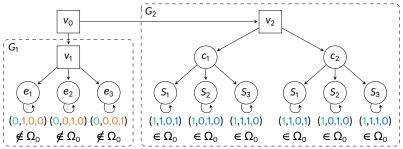


Example: $C = \{e_1, e_2, e_3\}, S_1 = \{e_1, e_3\}, S_2 = \{e_2\}, S_3 = \{e_1, e_2\}, k = 2$ special objective (Ω_1) and one objective per element ($\Omega_2, \Omega_3, \Omega_4$)



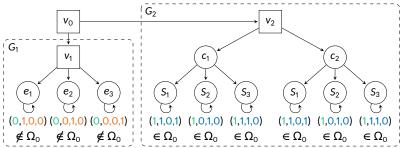
Every play in G_1 is **consistent with any strategy** of Player 0 and $\notin \Omega_0$

Example: $C = \{e_1, e_2, e_3\}, S_1 = \{e_1, e_3\}, S_2 = \{e_2\}, S_3 = \{e_1, e_2\}, k = 2$ special objective (Ω_1) and one objective per element ($\Omega_2, \Omega_3, \Omega_4$)



Every play in G_1 is **consistent with any strategy** of Player 0 and $\notin \Omega_0 \rightarrow$ in a solution, payoffs from G_1 **cannot be PO**

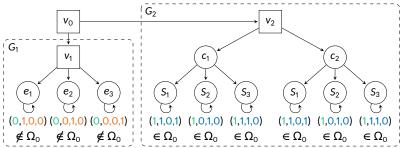
Example: $C = \{e_1, e_2, e_3\}, S_1 = \{e_1, e_3\}, S_2 = \{e_2\}, S_3 = \{e_1, e_2\}, k = 2$ special objective (Ω_1) and one objective per element ($\Omega_2, \Omega_3, \Omega_4$)



Every play in G_1 is **consistent with any strategy** of Player 0 and $\notin \Omega_0 \rightarrow$ in a solution, payoffs from G_1 **cannot be PO**

Each payoff in G_1 must be < than some payoff in G_2 (corresponding to a set)

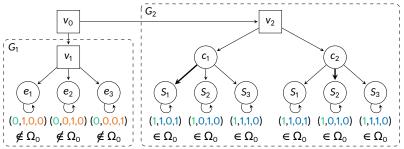
Example: $C = \{e_1, e_2, e_3\}, S_1 = \{e_1, e_3\}, S_2 = \{e_2\}, S_3 = \{e_1, e_2\}, k = 2$ special objective (Ω_1) and one objective per element ($\Omega_2, \Omega_3, \Omega_4$)



Every play in G_1 is **consistent with any strategy** of Player 0 and $\notin \Omega_0 \rightarrow$ in a solution, payoffs from G_1 **cannot be PO**

Each payoff in G_1 must be < than some payoff in G_2 (corresponding to a set)

Example: $C = \{e_1, e_2, e_3\}, S_1 = \{e_1, e_3\}, S_2 = \{e_2\}, S_3 = \{e_1, e_2\}, k = 2$ special objective (Ω_1) and one objective per element ($\Omega_2, \Omega_3, \Omega_4$)



Every play in G_1 is **consistent with any strategy** of Player 0 and $\notin \Omega_0 \rightarrow$ in a solution, payoffs from G_1 **cannot be PO**

Each payoff in G_1 must be < than some payoff in G_2 (corresponding to a set)

Hardness

NEXPTIME-Hardness

The SPS problem is NEXPTIME-hard for reachability and parity SP games

Hardness

NEXPTIME-Hardness

The SPS problem is NEXPTIME-hard for reachability and parity SP games

Intuition: use succinct variant of Set Cover problem (NEXPTIME-complete)

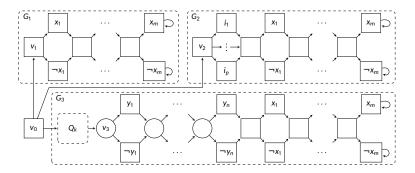
→ Set Cover problem succinctly defined using CNF formulas

Hardness

NEXPTIME-Hardness

The SPS problem is NEXPTIME-hard for reachability and parity SP games

Intuition: use **succinct variant** of Set Cover problem (NEXPTIME-complete) → Set Cover problem succinctly defined using **CNF formulas**



Conclusion

Recalled the concept of reactive synthesis

- classical approach using two-player zero-sum games
- setbacks and alternatives

Introduced Stackelberg-Pareto Synthesis problem

- our novel approach to synthesis
- FPT and NEXPTIME-completeness

Future work

- study other ω -regular objectives
- adapt to guantitative objectives such as mean-payoff
- study whether rational synthesis can benefit from our approaches

Bibliography I

[BRT21] Véronique Bruyère, Jean-François Raskin, and Clément Tamines. Stackelberg-pareto synthesis (full version). CoRR, abs/2102.08925, 2021.

[DF12] R.G. Downey and M.R. Fellows.

Parameterized Complexity.

Monographs in Computer Science. Springer New York, 2012.

[FKL10] Dana Fisman, Orna Kupferman, and Yoad Lustig. Rational synthesis.

> In Javier Esparza and Rupak Majumdar, editors, Tools and Algorithms for the Construction and Analysis of Systems, 16th International Conference, TACAS 2010, Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS

Bibliography II

2010, Paphos, Cyprus, March 20-28, 2010. Proceedings, volume 6015 of Lecture Notes in Computer Science, pages 190–204. Springer, 2010.

[GTW02] Erich Grädel, Wolfgang Thomas, and Thomas Wilke, editors. Automata, Logics, and Infinite Games: A Guide to Current Research [outcome of a Dagstuhl seminar, February 2001], volume 2500 of Lecture Notes in Computer Science. Springer, 2002.

[Kar72] Richard M. Karp.

Reducibility among combinatorial problems.

In Raymond E. Miller and James W. Thatcher, editors, Proceedings of a symposium on the Complexity of Computer Computations, held March 20-22, 1972, at the IBM Thomas J.

Bibliography III

Watson Research Center, Yorktown Heights, New York, USA, The IBM Research Symposia Series, pages 85–103. Plenum Press, New York, 1972.

- [KPV16] Orna Kupferman, Giuseppe Perelli, and Moshe Y. Vardi. Synthesis with rational environments. Ann. Math. Artif. Intell., 78(1):3–20, 2016.
- [vS37] Heinrich Freiherr von Stackelberg.Marktform und Gleichgewicht.Wien und Berlin, J. Springer, 1937.